[Aula 18] Máquina de Turing

Prof. João F. Mari joaof.mari@ufv.br

[Aula 18] Máquina de Turing

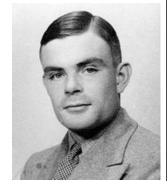
SIN 131 – Introdução à Teoria da Computação (PER-3)

BIBLIOGRAFIA

- MENEZES, P. B. Linguagens formais e autômatos,
 6. ed., Bookman, 2011.
 - Capítulo 8.
 - + Slides disponibilizados pelo autor do livro.

- Ciência da Computação:
 - Conhecimento sistematizado relativo à computação
- A origem da Ciência da Computação é remota:
 - Grécia antiga(III a.C):
 - Euclides desenvolve um algoritmo para encontrar o MDC.
 - Babilônia:
 - Estudos sobre complexidade e redutibilidade de problemas.
 - Início do século XX:
 - Pesquisas com o objetivo de definir:
 - Modelo computacional suficientemente genérico;
 - Capaz de implementar qualquer função computável.

Prof. João Fernando Mari (joaof.mari@ufv.br)


=

[Aula 18] Máquina de Turing

SIN 131 – Introdução à Teoria da Computação (PER-3)

Linguagens recursivamente enumeráveis

- Máquina de Turing:
 - Proposto por Alan Turing (1936):
 - Aceito como uma formalização de:
 - Procedimento efetivo;
 - Algoritmo;
 - Função computável.

https://pt.wikipedia.org/wiki/Alan_Turing

- Algoritmo:
 - Sequência finita de instruções;
 - Podem ser realizadas mecanicamente em um tempo finito.

https://pt.wikipedia.org/wiki/Máquina_de_Turing

- Hipótese de Church (ou Tese de Church-Turing):
 - Proposto por Alonzo Church (1936)

"Qualquer função computável pode ser processada por uma máquina de Turing."

 Existe um procedimento expresso na forma de uma máquina de Turing capaz de processar a função.

https://en.wikipedia.org/wiki/Alonzo_Church https://pt.wikipedia.org/wiki/Tese_de_Church-Turing

Prof. João Fernando Mari (joaof.mari@ufv.br)

_

[Aula 18] Máquina de Turing

SIN 131 – Introdução à Teoria da Computação (PER-3)

Linguagens recursivamente enumeráveis

- Máquina de Turing:
 - É um autômato;
 - A fita não possui tamanho máximo;
 - Pode ser usada simultaneamente como:
 - Dispositivo de entrada;
 - Dispositivo de saída;
 - Memória de trabalho.
- Linguagens Recursivamente Enumeráveis (Tipo 0):
 - Classe de linguagens aceitas por uma máquina de Turing;
 - De acordo com a Hipótese de Church:
 - A classe das Linguagens Recursivamente Enumeráveis é:
 - O conjunto de todas as linguagens que podem ser reconhecidas mecanicamente em um tempo finito por uma máquina de Turing.

- Gramática Irrestrita:
 - Gramáticas sem restrições sobre a forma das produções
 - Possui o mesmo poder computacional que o formalismo
 Máquina de Turing
- Consequência importante do estudo das linguagens recursivamente enumeráveis
 - "Existem mais problemas não-solucionáveis do que problemas solucionáveis."

Prof. João Fernando Mari (joaof.mari@ufv.br)

7

[Aula 18] Máquina de Turing

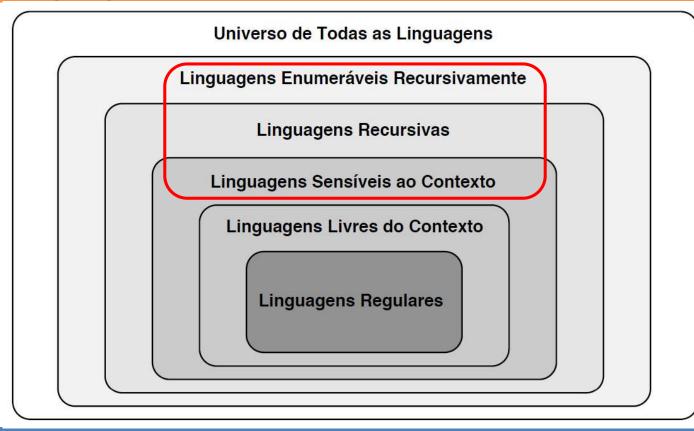
SIN 131 – Introdução à Teoria da Computação (PER-3)

Linguagens recursivamente enumeráveis

- A classe das Linguagens Recursivamente Enumeráveis:
 - Inclui linguagens para as quais é impossível determinar mecanicamente se uma palavra não pertence à linguagem.
 - Se L é uma destas linguagens, então:
 - Existe pelo menos uma palavra w não pertencente a L que;
 - Qualquer máquina de Turing M que aceita L entra em loop infinito.
 - Ou seja:
 - Se w pertence a L:
 - M para e aceita a entrada.
 - Se w **não pertence** a L:
 - (A) M para rejeitando a palavra ou
 - (B) M permanecer processando indefinidamente (loop).

- A classe das Linguagens Recursivamente Enumeráveis:
 - Linguagens recursivas:
 - Subclasse da classe das Linguagens Recursivamente Enumeráveis.
 - Existe pelo menos uma máquina de Turing que para qualquer entrada w:
 - Seja aceitando ou rejeitando w.

Prof. João Fernando Mari (joaof.mari@ufv.br)


C

[Aula 18] Máquina de Turing

SIN 131 – Introdução à Teoria da Computação (PER-3)

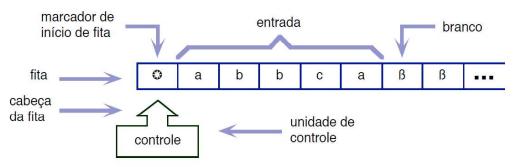
Linguagens recursivamente enumeráveis

- A classe das Linguagens Recursivamente Enumeráveis:
 - Linguagens Sensíveis ao Contexto (Tipo 1):
 - Aceitas por uma Máquina de Turing com Fita Limitada
 - Limitação no tamanho da fita (finita).
 - Gramática Sensível ao Contexto:
 - Diferente das Linguagens Livres de Contexto:
 - Possuem produções na forma:
 - yAz → ywz, para A ∈ V; y e z ∈ (V U T)*; e w ∈ (V U T)+;
 yAz : Só é possível derivar a partir de A de acordo com o contexto.
 - A Classe das Linguagens Sensíveis ao Contexto:
 - Está contida propriamente na Classe das Linguagens Recursivas;
 - Inclui a grande maioria das linguagens aplicadas.

Prof. João Fernando Mari (joaof.mari@ufv.br)

11

[Aula 18] Máquina de Turing


SIN 131 – Introdução à Teoria da Computação (PER-3)

Máquina de Turing

- Três partes:
 - Fita:
 - Dispositivo de entrada, saída e memória de trabalho.
 - Simultaneamente
 - Infinita: "tão grande quanto necessário"
 - Cada célula uma armazenando um símbolo.
 - Símbolos podem ser:
 - Do alfabeto de entrada, do alfabeto auxiliar, "branco" ou "marcador de início de fita".
 - Unidade de Controle:
 - Estado corrente da máquina;
 - Possui uma unidade de leitura e gravação (cabeça da fita);
 - Acessa uma célula da fita de cada vez;
 - Movimenta para a esquerda ou para a direita.
 - Programa, Função Programa ou Função de Transição:
 - Define o estado da máguina;
 - Comanda leituras, gravações e sentido de movimento (cabeça).

Máquina de Turing

- Inicialmente:
 - Palavra a ser processada:
 - Células mais à esquerda (após "marcador de início de fita")
 - Demais células: "branco".
- Unidade de controle
 - Número finito e predefinido de estados
 - A cabeça da fita:
 - · Lê um símbolo de cada vez e grava um novo símbolo
 - Move uma célula para a direita ou para a esquerda
 - O programa define o símbolo gravado e o sentido do movimento.

Prof. João Fernando Mari (joaof.mari@ufv.br)

13

[Aula 18] Máquina de Turing

SIN 131 – Introdução à Teoria da Computação (PER-3)

[DEF] Máquina de Turing

- Máguina de Turing M:
 - $M = (\Sigma, Q, \delta, q_0, F, V, \beta, \diamondsuit)$
 - Σ Alfabeto (de símbolos) de entrada;
 - Q Conjunto de estados possíveis da máquina (finito);
 - δ Função programa ou função de transição (função parcial);
 - Suponha que Σ ∪ V e { β, ۞ } são conjuntos disjuntos;

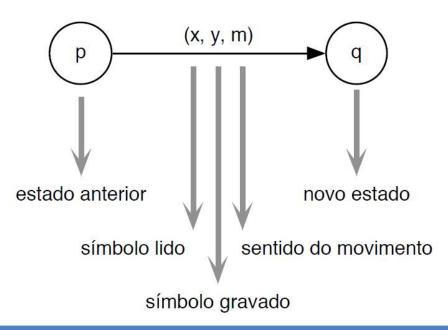
$$\delta: Q \times (\Sigma \cup V \cup \{\beta, \lozenge\}) \rightarrow Q \times (\Sigma \cup V \cup \{\beta, \lozenge\}) \times \{E, D\}$$

- Transição da máquina: $\delta(p, x) = (q, y, m)$
- q₀ Estado inicial: elemento distinguido de Q;
- F Conjunto de estados finais: subconjunto de Q;
- V Alfabeto auxiliar (pode ser vazio);
- β Símbolo especial branco;
- O Símbolo de início ou marcador de início da fita.

[DEF] Máquina de Turing

- Símbolo de início de fita
 - ocorre exatamente uma vez e na célula mais à esquerda da fita
- A Função programa...
 - Considera:
 - O estado corrente;
 - O símbolo lido da fita.
 - Determina:
 - O novo estado;
 - O símbolo a ser gravado;
 - Sentido de movimento da cabeça (E e D).

Prof. João Fernando Mari (joaof.mari@ufv.br)


15

[Aula 18] Máquina de Turing

SIN 131 – Introdução à Teoria da Computação (PER-3)

[DEF] Máquina de Turing

- Estados inicial e finai são como nos autômatos finitos;
 - Transição: $\delta(p, x) = (q, y, m)$)

Computação de uma entrada w por uma máquina de Turing

- Consiste da sucessiva aplicação da função programa:
 - A partir do estado inicial;
 - A cabeça posicionada na célula mais à esquerda da fita
 - Até ocorrer uma condição de parada.
 - Processamento pode parar ou ficar processando indefinidamente (ciclo ou loop infinito).
- Aceita a entrada w:
 - Atinge um estado final;
 - Máquina para e w é aceita
- Rejeita a entrada w:
 - Função programa é indefinida para o argumento (símbolo lido e estado corrente):
 - Máquina para e w é rejeitada.
 - Argumento define um movimento à esquerda, e a cabeça da fita já se encontra na célula mais à esquerda
 - Máquina para e w é rejeitada.

Prof. João Fernando Mari (joaof.mari@ufv.br)

17

[Aula 18] Máquina de Turing

SIN 131 – Introdução à Teoria da Computação (PER-3)

[DEF] Linguagens Aceita, Rejeitada, Loop

- Linguagem Aceita ou Linguagem Reconhecida por M: ACEITA(M) ou L(M)
 - Conjunto de todas as palavras de Σ^* aceitas por M, a partir de q_0 .
- Linguagem Rejeitada por M:

REJEITA(M)

- Conjunto de todas as palavras de Σ^* rejeitadas por M, a partir de q_0 .
- Linguagem Loop de M:

LOOP(M)

– Conjunto de todas as palavras de Σ^* para as quais M fica processando indefinidamente a partir de q_0 .

[DEF] Linguagens Aceita, Rejeitada, Loop

- Cada máquina de Turing M sobre Σ
 - Induz uma partição de Σ* em:
 - ACEITA(M), REJEITA(M) e LOOP(M)

Prof. João Fernando Mari (joaof.mari@ufv.br)

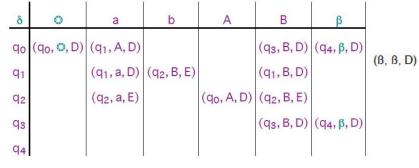
19

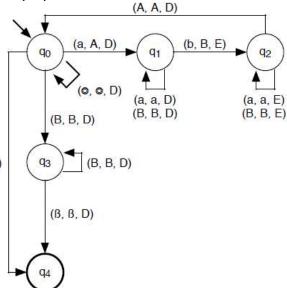
[Aula 18] Máquina de Turing

SIN 131 – Introdução à Teoria da Computação (PER-3)

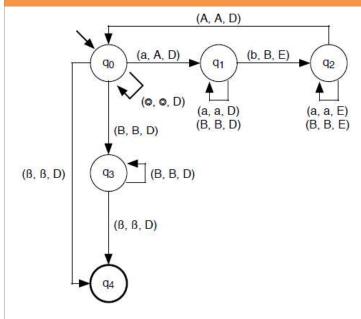
[EX] Máquina de Turing – Duplo balanceamento

- L = { aⁿbⁿ | n ≥ 0 }
- A Máquina de Turing M:


$$M = (\{ a, b \}, \{ q_0, q_1, q_2, q_3, q_4 \}, \delta, q_0, \{ q_4 \}, \{ A, B \}, \beta, \bigcirc)$$

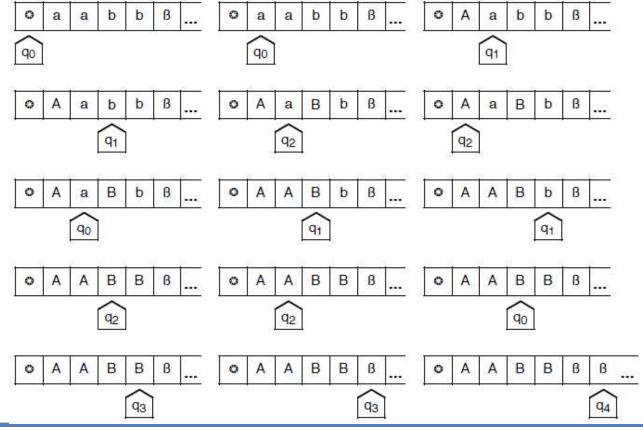

• É tal que:

$$ACEITA(M) = L e REJEITA(M) = ~L$$


Portanto, LOOP(M) = Ø

 Qualquer palavra que não esteja na forma a*b* é rejeitada

[EX] Máquina de Turing – Duplo balanceamento


Prof. João Fernando Mari (joaof.mari@ufv.br)

21

[Aula 18] Máquina de Turing

SIN 131 – Introdução à Teoria da Computação (PER-3)

[EX] Máquina de Turing – Duplo balanceamento

[OBS] Máquina de Turing Vs. Algoritmo

- Foi afirmado que Máquina de Turing:
 - É aceita como uma formalização do conceito de algoritmo.
- Entretanto, também é usual considerar como conceito de algoritmo:
 - A máquina de Turing que sempre para para qualquer entrada.
- Nesse caso, uma máquina que eventualmente fica em loop infinito:
 - Não seria considerada um algoritmo.

Prof. João Fernando Mari (joaof.mari@ufv.br)

23

[Aula 18] Máquina de Turing

SIN 131 – Introdução à Teoria da Computação (PER-3)

[FIM]

- FIM:
 - [AULA 18] Linguagens recursivamente enumeráveis –
 Máquina de Turing
- Próxima aula:
 - [AULA 19] Máquina de Turing Modelos equivalentes