[Aula 11] Linguagem livre de contexto – Gramática livre de contexto

Prof. João F. Mari joaof.mari@ufv.br

[Aula 11] LLC - Gramática Livre de Contexto

SIN 131 – Introdução à Teoria da Computação (PER-3)

BIBLIOGRAFIA

- MENEZES, P. B. Linguagens formais e autômatos,
 6. ed., Bookman, 2011.
 - Capítulo 6.
 - + Slides disponibilizados pelo autor do livro.

ROTEIRO

- Linguagens Livres do Contexto
- Gramática Livre de Contexto
- GLC Linguagem gerada por uma GLC
- EXEMPLO: GLC Duplo Balanceamento
- Sobre o Duplo Balanceamento
- EXEMPLO: GLC Expressões Aritméticas
- Forma de Backus Naur (BNF Backus Naur Form)
- EXEMPLO: BNF Identificadores (C, Pascal, Java)
- Árvore de Derivação
- Árvore de Derivação × Derivações
- Derivação mais à Esquerda e Derivação mais à Direita
- · GLC Ambígua e Gramática Ambígua
- EXEMPLO: GLC ambígua Expressão Aritmética
- Linguagem Inerentemente Ambígua
- Contraexemplo: Linguagem Inerentemente Ambígua

Prof. João Fernando Mari (joaof.mari@ufv.br)

-

[Aula 11] LLC - Gramática Livre de Contexto

SIN 131 – Introdução à Teoria da Computação (PER-3)

Linguagens Livres do Contexto

- Classe das Linguagens Livres do Contexto ou Tipo 2
 - Fundamental importância para computação e informática.
 - Universo mais amplo de linguagens quando comparado com as LR
 - Trata, adequadamente, questões típicas de linguagens de programação
 - Parênteses balanceados
 - Construções bloco-estruturadas, etc.
- Algoritmos reconhecedores e geradores
 - São relativamente simples.
 - Possuem eficiência razoável.

A gente estudamos para a prova.

Linguagens Livres do Contexto

- Aplicações típicas
 - Centradas em linguagens artificiais
 - Em especial, nas linguagens de programação
 - Analisadores sintáticos
 - Tradutores de linguagens
 - Processadores de texto em geral
 - Analisador sintático do Word (Quando seu Word "marca" seu texto em verde).
- Na Hierarquia de Chomsky
 - A Classe das Linguagens Livres do Contexto
 - Contém propriamente a Classe das Linguagens Regulares
- Porém, ainda é uma classe relativamente restrita
 - É fácil definir linguagens que não pertencem a esta classe.
 - (Linguagens SENSIVEIS ao Contexto e Linguagens Recursivamente Enumeráveis)

Prof. João Fernando Mari (joaof.mari@ufv.br)

[Aula 11] LLC - Gramática Livre de Contexto

SIN 131 – Introdução à Teoria da Computação (PER-3)

Linguagens Livres do Contexto

- Formalismos:
 - Gramática Livre do Contexto (axiomático ou gerador)
 - Restrições na forma das regras de produção
 - Mais livre do que na gramática regular
 - Autômato com Pilha (operacional ou reconhecedor)
 - Análogo ao autômato finito não determinístico
 - Adicionalmente: memória auxiliar tipo pilha
 - Pode ser lida ou gravada

Gramática Livre de Contexto

- Relativamente às GLC
 - Árvore de derivação
 - representa a derivação de uma palavra na forma de árvore
 - arte do símbolo inicial como a raiz
 - termina em símbolos terminais como folhas
 - Gramática Ambígua
 - pelo menos uma palavra com duas ou mais árvores de derivação
 - Simplificação de Gramática (produções)
 - sem reduzir o poder de geração
 - Forma Normal: restrições rígidas na forma das produções
 - sem reduzir o poder de geração da gramática

Prof. João Fernando Mari (joaof.mari@ufv.br)

7

[Aula 11] LLC - Gramática Livre de Contexto

SIN 131 – Introdução à Teoria da Computação (PER-3)

Gramática Livre de Contexto

- Autômato com pilha construído a partir de uma GLC
 - A construção de um reconhecedor a partir de sua gramática
 - É simples e imediata.
 - Estrutura de pilha é suficiente como única memória
 - Pode ser reconhecida por autômato com pilha com um estado.
 - Os estados não são necessários para "memorizar" o passado.
 - Diferentemente dos Autômatos Finitos, em que os estados eram a única forma de armazenar algum tipo de informação.

GLC – Linguagem gerada por uma GLC

Gramática Livre do Contexto (GLC)

$$G = (V, T, P, S)$$

• Qualquer regra de produção é da forma

$$A \rightarrow \alpha$$

- A é variável de V
 - lado esquerdo = uma variável
- α é palavra de (V U T)*
- · Linguagem gerada pela gramática livre do contexto G

$$GERA(G) = \{ w \in T^* \mid S \Rightarrow + w \}$$

Toda Linguagem Regular é Livre de Contexto.

Prof. João Fernando Mari (joaof.mari@ufv.br)

C

[Aula 11] LLC - Gramática Livre de Contexto

SIN 131 – Introdução à Teoria da Computação (PER-3)

Relação entre as classes de linguagens

Universo de Todas as Linguagens

Linguagens Livre do Contexto

Linguagens Regulares

Linguagem Livre de Contexto

- Porque o nome "Linguagem Livre do Contexto"?
 - Constitui a mais geral classe de linguagens cuja produção é da forma
 - $A \rightarrow \alpha$
 - Em uma derivação, a variável A deriva α
 - sem depender ("livre") dos símbolos que antecedem ou sucedem A (o "contexto")
 - na palavra que está sendo derivada

Prof. João Fernando Mari (joaof.mari@ufv.br)

11

[Aula 11] LLC - Gramática Livre de Contexto

SIN 131 – Introdução à Teoria da Computação (PER-3)

EXEMPLO: GLC – Duplo Balanceamento

Linguagem com Duplo Balanceamento

$$L1 = \{ a^n b^n \mid n \ge 0 \}$$

- G1 = ({ S }, { a, b }, P1, S)
 - $-P1 = \{S \rightarrow aSb\}$
 - $S \rightarrow \varepsilon$
 - -GERA(G1) = L1
- Derivação da palavra aabb
 - S ⇒ aSb ⇒ aaSbb ⇒ aaεbb = aabb

Sobre o Duplo Balanceamento

- Importância fundamental em computação
 - Permite estabelecer analogia com estruturas de duplo balanceamento em linguagens de programação
- Linguagens estruturadas em bloco
 - beginⁿ endⁿ, { }, e similares
- Linguagens com parênteses balanceados
 - (n)n

```
int main() {
   printf("Olá mundo!!!");
}
```

Prof. João Fernando Mari (joaof.mari@ufv.br)

13

[Aula 11] LLC - Gramática Livre de Contexto

SIN 131 – Introdução à Teoria da Computação (PER-3)

EXEMPLO: GLC - Expressões Aritméticas

- Seja L2 uma linguagem composta por:
 - expressões aritméticas com colchetes balanceados,
 - dois operadores e um operando
- G2 = ({ E }, { +, *, [,], x }, P2, E)
 P2 = { E → E+E | E*E | [E] | x }
- Derivação da expressão [x+x]*x
 - $-E \Rightarrow E*E \Rightarrow [E]*E \Rightarrow [E+E]*E \Rightarrow [x+E]*E \Rightarrow [x+x]*E \Rightarrow [x+x]*x$

Forma de Backus Naur (BNF – Backus Naur Form)

- Maneira usual de representar uma GLC
 - Variáveis
 - palavras delimitadas pelos símbolos <e>
 - Terminais
 - palavras não delimitadas
- A regra de produção

$$A \rightarrow \alpha$$

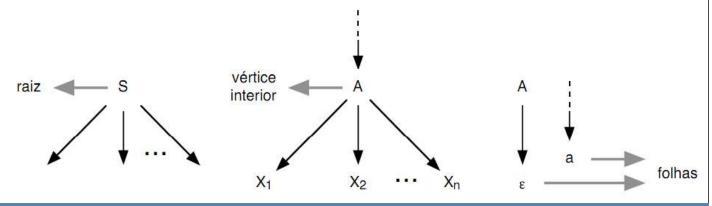
Na BNF, é representada por

$$::= \alpha$$

Prof. João Fernando Mari (joaof.mari@ufv.br)

11

[Aula 11] LLC - Gramática Livre de Contexto


SIN 131 – Introdução à Teoria da Computação (PER-3)

EXEMPLO: BNF – Identificadores (C, Pascal, Java)

- A variável <identificador> é o símbolo inicial
 - <identificador> ::= <letra> |
 <identificador><letra> | <identificador><dígito>
 - <letra> ::= a | b | ... | z
 - <dígito> ::= 0 | 1 | ... | 9

Árvore de Derivação

- Raiz: símbolo inicial
- Vértices interiores: variáveis
 - se A é um vértice interior e X1, X2,...,Xn são os "filhos" de A
 - A → X1X2...Xn é uma produção da gramática
 - X1, X2,...,Xn são ordenados da esquerda para a direita
- Vértice folha ou folha: terminal ou o símbolo vazio
 - Se vazio: único filho de seu pai $(A \rightarrow \epsilon)$

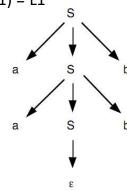
Prof. João Fernando Mari (joaof.mari@ufv.br)

17

[Aula 11] LLC - Gramática Livre de Contexto

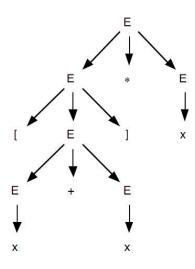
SIN 131 – Introdução à Teoria da Computação (PER-3)

Árvore de Derivação


Árvores de derivação para as palavras:

aabb

[x+x]*x


Duplo Balanceamento

G1 = ({ S }, { a, b }, P1, S)
P1 = { S
$$\rightarrow$$
 aSb | S \rightarrow ϵ }
GERA(G1) = L1

Expressão aritmética

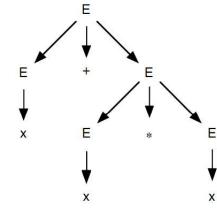
G2 = ({ E }, { +, *, [,], x }, P2, E)
P2 = { E
$$\rightarrow$$
 E+E | E*E | [E] | x }

Árvore de Derivação × Derivações

- Uma árvore de derivação pode representar derivações distintas de uma mesma palavra.
 - EXEMPLO: x+x*x

- E + E * E
- $E \Rightarrow E+E \Rightarrow x+E \Rightarrow x+E*E \Rightarrow x+x*E \Rightarrow x+x*x$
 - mais a esquerda
- $E \Rightarrow E+E \Rightarrow E+E*E \Rightarrow E+E*x \Rightarrow E+x*x \Rightarrow x+x*x$
 - · mais a direita
- $E \Rightarrow E+E \Rightarrow E+E*E \Rightarrow x+E*E \Rightarrow x+x*E \Rightarrow x+x*x$

Prof. João Fernando Mari (joaof.mari@ufv.br)


19

[Aula 11] LLC - Gramática Livre de Contexto

SIN 131 – Introdução à Teoria da Computação (PER-3)

Derivação mais à Esquerda e Derivação mais à Direita

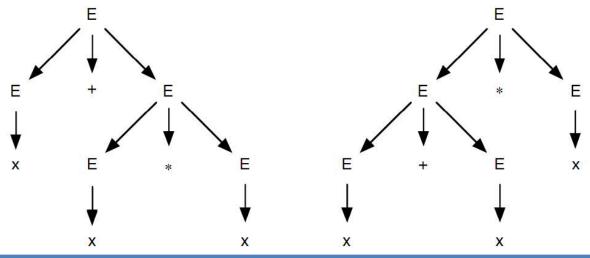
- Derivação mais à Esquerda
 - Sequência de produções aplicada sempre à variável mais à esquerda.
 - EXEMPLO: x+x*x
 - $E \Rightarrow E+E \Rightarrow x+E \Rightarrow x+E*E \Rightarrow x+x*E \Rightarrow x+x*x$

- Derivação mais à Direita
 - Sequência de produções aplicada sempre à variável mais à direita.
 - EXEMPLO: x+x*x
 - $E \Rightarrow E+E \Rightarrow E+E*E \Rightarrow E+E*x \Rightarrow E+x*x \Rightarrow x+x*x$

GLC Ambígua e Gramática Ambígua

- Uma GLC é dita ambígua se,
 - Existe pelo menos uma palavra que possua duas ou mais árvores de derivação nessa linguagem.
- Em muitas aplicações é desejável que a gramática usada seja não ambígua.
 - Exemplo: Linguagens de programação
- PORÉM, nem sempre é possível eliminar ambiguidades

Prof. João Fernando Mari (joaof.mari@ufv.br)


21

[Aula 11] LLC - Gramática Livre de Contexto

SIN 131 – Introdução à Teoria da Computação (PER-3)

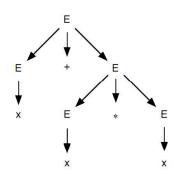
EXEMPLO: GLC ambígua – Expressão Aritmética

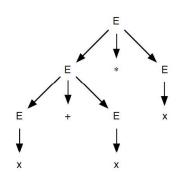
- Considera a GLC G2:
 - G2 = ({ E }, { +, *, [,], x }, P2, E)
 P2 = { E → E+E | E*E | [E] | x }
 - A palavra x+x*x pode ser gerada por arvores distintas

GLC Ambigua

- Outra forma de definir gramática ambígua é:
 - Verificando se existe pelo menos uma palavra com duas ou mais derivações mais à esquerda OU mais à direita.
- Gramática Ambígua
 - Uma GLC é uma Gramática Ambígua se existe pelo menos uma palavra com:
 - duas ou mais derivações mais à esquerda ou
 - duas ou mais derivações mais à direita

Prof. João Fernando Mari (joaof.mari@ufv.br)


23


[Aula 11] LLC - Gramática Livre de Contexto

SIN 131 – Introdução à Teoria da Computação (PER-3)

GLC Ambígua

- Considera a GLC G2:
 - $G2 = ({E}, {+, *, [,], x}, P2, E)$
 - P2 = { E \rightarrow E+E | E*E | [E] | x }
 - A palavra x+x*x
- Derivação mais à esquerda
 - $E \Rightarrow E+E \Rightarrow x+E \Rightarrow x+E*E \Rightarrow x+x*E \Rightarrow x+x*x$
 - $E \Rightarrow E*E \Rightarrow E+E*E \Rightarrow x+E*E \Rightarrow x+x*E \Rightarrow x+x*x$
- Derivação mais à direita
 - $E \Rightarrow E+E \Rightarrow E+E*E \Rightarrow E+E*x \Rightarrow E+x*x \Rightarrow x+x*x$
 - $E \Rightarrow E*E \Rightarrow E*x \Rightarrow E+E*x \Rightarrow E+x*x \Rightarrow x+x*x$

Linguagem Inerentemente Ambígua

- Uma linguagem L é dita Linguagem Inerentemente Ambígua quando:
 - Qualquer GLC que a define é ambígua
 - Ou seja, NÃO existe uma GLC não ambígua que define L.
- EXEMPLO: Linguagem Inerentemente Ambígua

```
- \{ w \mid w = a^n b^n c^m d^m \ n \ge 1, \ m \ge 1 \ ou \}
```

-
$$w = a^n b^m c^m d^n, n \ge 1, m \ge 1$$

Prof. João Fernando Mari (joaof.mari@ufv.br)

21

[Aula 11] LLC - Gramática Livre de Contexto

SIN 131 – Introdução à Teoria da Computação (PER-3)

Contraexemplo: Linguagem Inerentemente Ambígua

- A linguagem Expressões Aritméticas não é inerentemente ambígua
 - Dizemos apenas que a Linguagem é não ambígua.
 - Apesar de existirem várias GLCs ambíguas que a definem,
 - É possível definir (pelo menos) uma GLC não ambígua que a define.

[FIM]

- FIM:
 - [AULA 11] Linguagem livre de contexto Gramática livre de contexto.
- Próxima aula:
 - [AULA 12] Linguagem livre de contexto Simplificação de GLC.

Prof. João Fernando Mari (joaof.mari@ufv.br)